Text-to-Table Viewer
Convert structured text into interactive, searchable tables with advanced formatting
About Text-to-Table Conversion
Our text-to-table viewer transforms structured text data into interactive, sortable, and searchable tables. Perfect for analyzing logs, CSV data, tab-separated values, and any other structured text format with consistent patterns.
Key Features
- Multiple Formats: CSV, TSV, pipe-separated, and custom delimiters
- Auto-Detection: Automatically detects common delimiters and formats
- Interactive Tables: Sort, filter, and search through data
- Data Type Recognition: Identifies numbers, dates, and text columns
- Header Detection: Automatically identifies header rows
- Export Options: Export processed tables as CSV, JSON, or HTML
Supported Input Formats
- CSV:
Name,Age,City
- TSV:
Name Age City
(tab-separated) - Pipe-separated:
Name|Age|City
- Space-separated:
Name Age City
- Fixed-width: Columns aligned by spaces
- Custom delimiter: Any character as separator
Table Features
- Column Sorting: Click headers to sort data ascending/descending
- Global Search: Search across all columns and rows
- Column Filtering: Individual column filters for precise data selection
- Data Type Icons: Visual indicators for numbers, dates, and text
- Row Highlighting: Hover effects and selection highlighting
- Pagination: Handle large datasets with page navigation
Data Processing
- Header Detection: Automatically identifies first row as headers
- Data Cleaning: Trims whitespace and handles empty cells
- Type Inference: Detects numbers, dates, booleans, and text
- Null Handling: Properly handles empty and null values
- Encoding Support: UTF-8 and other character encodings
Common Use Cases
- Analyze CSV files and spreadsheet data
- Parse log files and structured text reports
- Convert text lists into searchable tables
- Preview and validate data before import
- Quick data exploration and analysis
- Generate HTML tables from text data
Advanced Options
- Custom Delimiters: Define any character or string as separator
- Quote Handling: Properly parse quoted values with embedded delimiters
- Escape Sequences: Handle escaped characters in data
- Skip Rows: Ignore header or footer rows
- Column Selection: Choose which columns to display
- Data Transformation: Apply basic formatting to columns
Export Formats
- CSV: Standard comma-separated values format
- JSON: Structured data with column types and metadata
- HTML Table: Complete HTML table with styling
- TSV: Tab-separated values for Excel compatibility
Performance Tips
- • For large datasets, consider pagination to improve performance
- • Use consistent delimiters throughout your data
- • Include headers in the first row for better column identification
- • Quote text values that contain the delimiter character
Data Validation
- Automatic detection of inconsistent row lengths
- Identification of malformed data and parsing errors
- Statistics on data completeness and quality
- Warnings for potential data issues